RESEARCH INTERESTING

I'm currently exploring the intersection of AI for knowledge reassembling. I'm particularly interested in connecting with others who share my passion for the following concepts:

• Comprehensive Scientific Analysis via Autonomous AI Systems: Integrating the entirety of scientific knowledge throughout human history into AI systems. This approach aims to rethink, reinterpret, and reconstruct our understanding of natural sciences.

Email: zhangtianning110@gmail.com

- Thinking While Investigating (TWI) Systems: Developing AI that functions as a real-time cognitive assistant, searcher, and analyzer during various activities such as writing, speaking, and observing.
- Large-Scale Multi-Agent Interaction Simulations: Creating complex, AI-driven scenarios that model interactions between multiple intelligent agents, potentially offering new insights into complex systems and behaviors.

EDUCATION

Singapore University of Technology and Design Ph.D. in Science, Math, and Technology Chu Kochen Honors College, Zhejiang University B.S. in Physics (Honour) Singapore Jan. 2018 - July 2022 Supt. 2013 - July 2017

Working

_	Chinese University of Hong Kong	Hong Kong
•	Postdoctoral Fellow	Sept 2023 - Present
•	Shanghai AI Lab	Shanghai
	Researcher (AI for Science, LLM)	July 2022 - Present

HIGHLIGHT PROJECTS

- Scientific Knowledge LLM: Leveraging the logical reasoning capabilities of Large Language Models to analyze and construct a comprehensive scientific knowledge graph spanning from ancient times to the present. This project involves real-time tracking and archiving of cutting-edge scientific and technological developments, identifying and extrapolating frontier knowledge. The ultimate goal is to enhance the transmission of human knowledge and significantly improve productivity in scientific research.
 - $\circ\,$: Developed the Uparxive dataset for scientific knowledge representation.
 - : Created the Lougat scientific OCR model for efficient text extraction from scientific documents.
 - \circ : Implemented the DocReLM self-instructing embedding system for document understanding.
 - o: Engineered PDF Kit: A tool optimized for batch processing of scientific literature. 10x optimized for 80M pdfs
 - : Designed a Knowledge-Based Writing Fill-in Completion system to assist writing.
- Large Quake Model: FisH: The "FisH" model provides a unified solution to three critical problems in earthquake wave processing: picking, location estimation, and intensity estimation. Utilizing a Linear Transformer-based RetNet model, FisH achieves sub-second response latency, significantly expanding the window for earthquake early warning systems. This approach dramatically reduces computational costs while maintaining high accuracy.
- Large Weather Model: Fengwu: The "Fengwu" large-scale model, built on multimodal and multi-task deep learning methods, represents a breakthrough in meteorological forecasting. It achieves, for the first time, effective forecasts of core atmospheric variables at high resolution for over 10 days, outperforming existing models in 80% of evaluation metrics. Fengwu can generate high-precision global forecasts for the next 10 days in just 30 seconds, marking a significant leap in both accuracy and efficiency compared to traditional weather models.

ACADAMIC

- Zhang T, Liu F, Yuan YM, Su R, Ouyang Wanli, Bai L. Fast Information Streaming Handler (FisH), arXiv preprint arXiv:2408.06629, 2024.
- Wei G, Pang X, **Zhang T**, et al. DocReLM: Mastering Document Retrieval with Language Model[J]. arXiv preprint arXiv:2405.11461, 2024.
- C. Kang, T. Han, J. Gong, **T. Zhang**, Lei Bai, Wanli Ouyang et al. "FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond 10 Days Lead." arXiv preprint arXiv:2304.02948 (2023).
- T. Zhang, L. K. Ang, "Deep learning-based design of broadband GHz complex and random metasurfaces", APL Photonics 6, 106101 (2021)